
Introduction and Objectives Representations Boolean Operations Shifting More Complex Operations

Bit Manipulations

CS 491 – Competitive Programming

Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Fall 2023



Introduction and Objectives Representations Boolean Operations Shifting More Complex Operations

Objectives

I Compute binary representations of an integer

I standard
I one’s compliment
I two’s compliment of arbitrary integers.

I Demonstrate the properties of boolean operations and, or, not, xor.

I Use shifting operations to test, set, and toggle arbitrary bits.

I Quickly determine if an integer is a power of 2.

I Quickly determine the number of set bits in an integer.

I Quickly determine the least significant set bit in an integer.



Introduction and Objectives Representations Boolean Operations Shifting More Complex Operations

Representation of a Positive Integer

I I think you know this very well by now….

I Each digit is a successive power of 2
I Let’s use 6 bit integers for our examples.

2 = 000010
8 = 001000

10 = 001010
17 = 010001



Introduction and Objectives Representations Boolean Operations Shifting More Complex Operations

One’s Compliment

I If you just “flip all the bits” you get one’s compliment.

I In C++, the ~ operator will do this.

2 = 000010 ~2 = 111101
8 = 001000 ~8 = 110111

10 = 001010 ~10 = 110101
17 = 010001 ~17 = 101110

I We don’t use one’s compliment for negation though:

0 = 000000 ~0 = 111111



Introduction and Objectives Representations Boolean Operations Shifting More Complex Operations

Two’s Compliment

I Take one’s compliment (flip the bits) and then add one.

I In C++, regular old negation will do this.

2 = 000010 ~2 = 111101 -2 = 111110
8 = 001000 ~8 = 110111 -8 = 111000

10 = 001010 ~10 = 110101 -10 = 110110
17 = 010001 ~17 = 101110 -17 = 101111
0 = 000000 ~0 = 111111 -0 = 000000



Introduction and Objectives Representations Boolean Operations Shifting More Complex Operations

Properties of And, Or, Not

Binary And &
I Commutative and associative.

I Identity is “all ones”.

Binary Or |
I Commutative and associative.

I Identity is “all zeros.”

Not ~
I Is its own inverse. ~(~x) = x=



Introduction and Objectives Representations Boolean Operations Shifting More Complex Operations

Example

a = 011001
b = 001010
c = 100110
a & b = 001000 a | b = 011011
b & c = 000010 b | c = 101110
a & c = 000000 a | c = 111111



Introduction and Objectives Representations Boolean Operations Shifting More Complex Operations

Exclusive or

I Is true if bits are different.

0 ^ 0 = 0
1 ^ 0 = 1
0 ^ 1 = 1
1 ^ 1 = 0

I Is a good way to toggle bits:

I (a ^ b) ^ b == a



Introduction and Objectives Representations Boolean Operations Shifting More Complex Operations

Shifting Operations

I Use << to shift left, >> to shift right.

I 001010 << 2 = 101000
I 001010 >> 2 = 000010

I Allows easy multiplication and division by 2.

I Allows easy bit inspection and manipulations.

Check bit i

n & (1 << i)

Set bit i

n |= (1 << i)

Toggle bit i

n ^= (1 << i)



Introduction and Objectives Representations Boolean Operations Shifting More Complex Operations

Some operations

Think about how you could do these operations.

I Check if a number is divisible by 2. O(1)

I Clear lower n bits. O(1)

I Clear bits above n. O(1)

I Check if n is a power of 2. O(1)
I Hint: what is x & (x-1)?

I Count number of set bits in n. O(b) b = number of bits.

I Get least significant set bit. O(1)
I Hint: you need the two’s compliment.



Introduction and Objectives Representations Boolean Operations Shifting More Complex Operations

Clear bits n and up

I To clear upper n bits, you need to create a bitmask that sets the

lower bits.

mask = (1 << n) - 1;
x = x & mask;
I Example

x = 110011 -- lets clear bits 2 and up
mask = (1 << 2) -1;

= 000100 - 1
= 000011

x & mask = 110011
& 000011
--------

000011



Introduction and Objectives Representations Boolean Operations Shifting More Complex Operations

Clear bits n and down

I To clear lower n bits, you need to create a bitmask that sets the

lower bits, then compliment.

mask = ~((1 << (n+1)) - 1);
x = x & mask;
I Example

x = 110011 -- lets clear bits 3 and down
mask = ~((1 << 3) -1);

= ~(001000 - 1)
= ~ 000111
= 111000

x & mask = 110011
& 111000
--------

110000



Introduction and Objectives Representations Boolean Operations Shifting More Complex Operations

Check if n is odd or power of two

I If x is odd, x&1 is 1.

I Check x is power of 2, x & (x-1) will be zero.

x = 001000
x-1 = 000111

& ------
000000

x = 001010
x-1 = 001001

& ------
001000

I Use (x && !(x & (x-1)) to exclude when x is zero.



Introduction and Objectives Representations Boolean Operations Shifting More Complex Operations

Check number of set bits in n

Consider n&(n− 1)…

n = 101100
n-1 = 101011

& ------
101000

so…

num = 0;
while (n>0) {

num++;
n = n & (n-1);

}



Introduction and Objectives Representations Boolean Operations Shifting More Complex Operations

Get least significant bit

I n & (-n) will do this.

n = 101100
-n = 010100 (= 010011 + 1)

& ------
000100


	Introduction and Objectives
	Representations
	Boolean Operations
	Shifting
	More Complex Operations

