◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣�(♡

Combinatorics CS 491 CAP

Mattox Beckman

University of Illinois at Urbana-Champaign Department of Computer Science

Fall 2023

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣�(♡

Objectives

- Determine the next lexicographic permutation of an array
- Calculate and use Binomial Coefficients

Permutations

Objectives

Some permutations of 1,2,3,4,5:

- $1 \ 4 \ 3 \ 5 \ 2$
- $4 \ 1 \ 2 \ 3 \ 5$
- $5 \ 4 \ 3 \ 1 \ 2$
- $3\quad 2\quad 5\quad 1\quad 2$
- There are n! permutations of n distinct elements.

Permutations with Repetitions

Suppose there are repeated elements

- n total elements,
- n₁ elements of class 1,
- n₂ elements of class 2, etc...
- n_i elements of class j.

There are $\frac{n!}{n_1!n_2!\cdots n_i}$ total permutations.

E.g., How many ways are there to line up 6 red balls and 3 white balls?

 $=\frac{9!}{6!3!}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Calculating Next Permutations

- C++ has a next_permutation function, but suppose you need to do this yourself?
 - Find the highest index *i* such that a[i] < a[i + 1] This is the *pivot*.
 - Find the highest index *j* such that a[j] > a[i].
 - $1 \ 4 \ 3 \ 5 \ 2$
 - In the above array, a[i] = 3, a[j] = 5.
 - Swap a[j] and a[i].
 - $1 \ 4 \ 5 \ 3 \ 2$
 - Then sort the following elements.
 - $1 \ 4 \ 5 \ 2 \ 3$

Objec O	tives	Permutations 000€0	Combinations 00
Code			
		d nortDormutation (int ann[] int n) [
1	VOT	<pre>d nextPermutation(int arr[], int n) {</pre>	
2		int $i = n - 2;$	
3		// Find the index of the first element that is	smaller
4		<pre>while (i >= 0 && arr[i] >= arr[i + 1]) i;</pre>	
5		// If there is no such element, the array is a	lready in
6		if (i < 0) {	
7		reverse(arr, 0, n - 1);	
8		return;	
9		}	
10		int j = n - 1;	
11		// Find the index of the smallest element to the	he right
12		<pre>while (j >= 0 && arr[j] <= arr[i]) j;</pre>	
13		<pre>swap(arr[i], arr[j]);</pre>	
14		// Reverse the elements to the right of i	
15		reverse(arr, $i + 1$, $n - 1$);	
16	}		
		< □ > < 酉 > < 亘 > < 亘 > < 亘 >	E nac

Derangements

A derangement is a permuation in which every element is relocated.
Written !n
!0 = 0
!1 = 0
!n = (n - 1) * (!(n - 1)+!(n - 2))
\$!2 = 1, !3 = 2, !4 = 9, !5 = 44, !6 = 265, ...\$
Not that common, but easy to code with DP.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Binomial Coefficients

- Coefficients of the expansion of (x + y)ⁿ
 e.g. (x + y)⁴ = x⁴ + 4x³y + 6x²y² + 4xy³ + y⁴
- These are everywhere. E.g. Pascal's Triangle... 1 11 121
 - $1\,3\,3\,1$
 - $1\,4\,6\,4\,1$
- Number of ways to chose k items from n objects. (k starts at 0...)

Formulae

- ► The formula: $C(n,k) = \frac{n!}{k!(n-k)!}$
- The recurrence: "either take or ignore an item"
 C(n,0) = C(n,n) = 1
 C(n,k) = C(n-1,k-1) + C(n-1,k)
- Use DP if you need a lot, but not all, of these numbers.