
Introduction and Objectives Discussion Example: nQueens

Course Introduction

Introduction to Competitive Programming

Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Fall, 2023

Introduction and Objectives Discussion Example: nQueens

Objectives

I Describe four patterns of brute force;

I Describe the times when a brute force solution is necessary.

I Describe some techniques to optimize brute force algorithms.

Introduction and Objectives Discussion Example: nQueens

What is it?

I You must traverse the entire problem space to get the answer.

I Sometimes you can prune the problem space.

8 6 7 5 3 0 9

1 max=a[0]; // why not just put 0 here?
2 for(int i=1; i<7; i++)
3 if (a[i]>max) max=a[i];

Introduction and Objectives Discussion Example: nQueens

When to Use It

I Tradeoffs

I Bad: It’s slow!
I Good: It’s simple! More likely to give correct solution.

I Three situations:

I When you have no choice.
I When the problem set is small.
I To verify your real solution!Introduction

Introduction and Objectives Discussion Example: nQueens

Categories

I Code Pattern

I Iterative
I Recursive

I Traversal Pattern

I Filtering
I GeneratingIntroduction

Introduction and Objectives Discussion Example: nQueens

Speed

I Use bits instead of boolean arrays

I Use primitive types when appropriate:

I int32 instead of int64
I arrays instead of vector
I character arrays instead of string

I Prefer iteration to recursion

I The STL algorithm include has next_permutation, which is very
fast

I Declare large data structures in the global scope

Introduction and Objectives Discussion Example: nQueens

The n-queens problem

x x

x x x

x Q x x x

x x x

x x

I If you don’t know chess, you might want to learn the basic rules.

I Classic problem: place n queens on a n× n chessboard.

I How many ways can you do it?

Introduction and Objectives Discussion Example: nQueens

Two examples

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Introduction and Objectives Discussion Example: nQueens

How to write this?

I Attempt 1 : Massive nested for loops

1 vvi board(8,vi(8)); // get
2 count = 0;
3 for(i=0; i<7; ++i) {
4 board[0][i] = 1; // place queen
5 for(j=0; j<7; ++j)
6 if (! collides(board,1,j)) {
7 board[1][j] = 1;
8 for(k=0; ...) ; // rest of program
9 board[1][j] = 0;

10 }
11 board[0][i] = 0; // remove queen
I Final position; if no collisions increment count.
I What do you think of this code? 88 attempts….

Introduction and Objectives Discussion Example: nQueens

Improvements

Q

Q

Q

Q

Q

I We don’t need 88 checks.

I Instead of modeling the chess board, model where the queens are
placed.

I This example is {0,3,1,4,2}.

Introduction and Objectives Discussion Example: nQueens

Backtracking

I Example code from Competive Programming 4

1 void backtrack(int c) {
2 if ((c == 8) && (row[b] == a)) { // a candidate solution
3 printf("%2d %d", ++lineCounter, row[0]+1);
4 for (int j = 1; j < 8; ++j)
5 printf(" %d", row[j]+1);
6 printf("\n");
7 return; // optional statement
8 }
9 for (int r = 0; r < 8; ++r) { // try all possible row

10 if ((c == b) && (r != a)) continue; // early pruning
11 if (canPlace(r, c)) // can place a Queen here?
12 row[c] = r, backtrack(c+1); // put here and recurse
13 }
14 }

Introduction and Objectives Discussion Example: nQueens

Checking Placement

I Don’t walk the diagonals; use math!

1 bool canPlace(int r, int c) {
2 for (int prev = 0; prev < c; ++prev) // check previous
3 if ((row[prev] == r) ||
4 (abs(row[prev]-r) == abs(prev-c)))
5 return false; // infeasible
6 return true;
7 }

Introduction and Objectives Discussion Example: nQueens

Using bitmasks

I Keep three bit-vectors.

I Shifting the bits handles the diagonals.

// Place a queen in row r
rows |= (1 << r);
up |= (1 << r);
down |= (1 << r);

// Moving to the next column...

up <<= 1;
down >>= 1;

	Introduction and Objectives
	Discussion
	Example: n Queens

