
Introduction and Objectives The Intuition The Program

Knapsack Problem 2

CS 491 – Competitive Programming

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Fall 2023

Introduction and Objectives The Intuition The Program

Objectives

I Use a combination of divide and conquer to solve the knapsack-n

problem.

Introduction and Objectives The Intuition The Program

Running Example

I Suppose we have the following items:

w c

5 15
4 10
1 1

I Demonstrate that a greedy algorithm will not work.

I Hint: Use a bag of capacity 13.

Introduction and Objectives The Intuition The Program

The intuition

I Suppose f(S) is the best solution we can get from a bag of size S.

I Then, for some 0 < X < S, we have f(S) = f(S− X) + f(X).

I Do you belive that?

Introduction and Objectives The Intuition The Program

The intuition

I Suppose f(S) is the best solution we can get from a bag of size S.

I Then, for some 0 < X < S, we have f(S) = f(S− X) + f(X).

I Do you belive that?

w = 5, c = 15 w = 4, c = 10 w = 4, c = 10

Introduction and Objectives The Intuition The Program

How to pick x

I LetW be the maximum weight item (in our case, 5).

S1 = bS−W
2 c+ (S−W) mod 2 = 4

S2 = bS+W
2 c = 9

Introduction and Objectives The Intuition The Program

How to pick x

I LetW be the maximum weight item (in our case, 5).

S1 = bS−W
2 c+ (S−W) mod 2 = 4

S2 = bS+W
2 c = 9

w = 5, c = 15 w = 4, c = 10 w = 4, c = 10

Introduction and Objectives The Intuition The Program

How to pick x

I LetW be the maximum weight item (in our case, 5).

S1 = bS−W
2 c+ (S−W) mod 2 = 4

S2 = bS+W
2 c = 9

w = 5, c = 15 w = 4, c = 10 w = 4, c = 10

Introduction and Objectives The Intuition The Program

What we need to consider

I We need to consider all the pairs

(S1.S2), (S1 + 1, S2 − 1), . . . (S1 +W/2, S2 −W/2).

f(13) = f(4) + f(9) = 10 + 20 = 30
f(13) = f(5) + f(8) = 15 + 20 = 35
f(13) = f(6) + f(7) = 16 + 17 = 33

I In this example, our best partition is at 5 and 8, giving us 35.

w = 5, c = 15 w = 4, c = 10 w = 4, c = 10

w = 5, c = 15 w = 4, c = 10 w = 4, c = 10

Introduction and Objectives The Intuition The Program

Bigger Example

I Remember the weights:

w c

5 15
4 10
1 1

I What is the optimum cost for a bag of size 58?

I S1 = 27, S2 = 31
I So we need to compute f(27) + f(31), f(28) + f(30), f(29) + f(29).

Introduction and Objectives The Intuition The Program

Bigger Example, Recurse!

I What is the optimum cost for a bag of size 53?

I S1 = 27, S2 = 31
I We will use recursion to compute f(27), · · · , f(31)

I To compute $f(27) we have S1 = 11.

I To compute $f(31) we have S2 = 18.
I We only compute S1 for the left and S2 for the right since we will

need the whole range anyway.

Introduction and Objectives The Intuition The Program

Bigger Example, Recurse!

I What is the optimum cost for a bag of size 53?

I S1 = 27, S2 = 31
I We will use recursion to compute f(27), · · · , f(31)
I To compute f(27) we have S1 = 11.
I To compute f(31) we have S2 = 18.

I Recurse again on 11 and 18…

I S1 = 3, S2 = 11.

I The next recursion has S1 ≤ 0, so we stop here.

Introduction and Objectives The Intuition The Program

Base Case

I Compute up to 3W as a regular DP array.

1 for(long long i=0;i<N;i++) {
2 cin >> w[i] >> c[i];
3 maxw=max(maxw,w[i]);
4 }
5 for (long long i=0;i<N;i++)
6 for (long long j=w[i];j<=3*maxw;j++)
7 dp[j]=max(dp[j],dp[j-w[i]]+c[i]);

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 10 11 12 13 20 21 22 23 30 31 32 33

0 1 2 3 10 15 16 17 20 25 30 31 32 35 40 45

Introduction and Objectives The Intuition The Program

Compute the S levels

8 e=0; S1=S; S2=S;
9 while(S1>0) {

10 l[e]=S1; r[e]=S2;
11 S1=(S1-maxw)/2+(S1-maxw)%2;
12 S2=(S2+maxw)/2;
13 e++;
14 }

For this case: we get

e l r
0 58 58
1 27 31
2 11 18
3 3 11

Introduction and Objectives The Intuition The Program

Recursively compute answers

1 for(long long i=e-1;i>=0; i--) {
2 for (long long j=l[i];j<=r[i];j++) {
3 if(j<=3*maxw)
4 ans[i][j]=dp[j];
5 else for(long long k=(j-maxw)/2+(j-maxw)%2;
6 k*2LL<=j;
7 k++)
8 ans[i][j]=max(ans[i][j]
9 ,ans[i+1][k]+ans[i+1][j-k]);

10 }

Introduction and Objectives The Intuition The Program

Recursively compute answers, e = 3

1 for(long long i=e-1;i>=0; i--) {
2 for (long long j=l[i];j<=r[i];j++) {
3 if(j<=3*maxw)
4 ans[i][j]=dp[j];
5 else for(long long k=(j-maxw)/2+(j-maxw)%2;
6 k*2LL<=j;
7 k++)
8 ans[i][j]=max(ans[i][j]
9 ,ans[i+1][k]+ans[i+1][j-k]);

10 }

I ans[3][3..11] = 3, 10, 15, 16, 17, 20, 25, 30, 31

Introduction and Objectives The Intuition The Program

Recursively compute answers, Rest of e

1 for(long long i=e-1;i>=0; i--) {
2 for (long long j=l[i];j<=r[i];j++) {
3 if(j<=3*maxw)
4 ans[i][j]=dp[j];
5 else for(long long k=(j-maxw)/2+(j-maxw)%2;
6 k*2LL<=j;
7 k++)
8 ans[i][j]=max(ans[i][j]
9 ,ans[i+1][k]+ans[i+1][j-k]);

10 }

I ans[3][3..11] = 3, 10, 15, 16, 17, 20, 25, 30, 31

I ans[2][11..18] = 31, 32, 35, 40, 45, 46, 47, 50

I ans[1][27..31] = 77, 80, 85, 90, 91

I ans[0][58] = 170

Introduction and Objectives The Intuition The Program

Optimization

I We don’t need the whole array!!

1 for(long long i=e-1;i>=0; i--) {
2 for (long long j=l[i];j<=r[i];j++) {
3 if(j<=3*maxw)
4 ans[i][j-l[i]]=dp[j];
5 else for(long long k=(j-maxw)/2+(j-maxw)%2;
6 k*2LL<=j;
7 k++)
8 ans[i][j-l[i]]=max(ans[i][j-l[i]]
9 ,ans[i+1][k-l[i+1]] +

10 ans[i+1][j-k-l[i+1]]);
11 }

	Introduction and Objectives
	The Intuition
	The Program

