DP 2: Longest Common Subsequence and Longest Increasing Subsequence

Mattox Beckman

University of Illinois at Urbana-Champaign Department of Computer Science

Fall, 2022

Introduction and Objectives

Two common DP patterns involve picking subsequences from an array that maximize a property. Today we will discuss Longest Common Subsequence and Longest Increasing Subsequence.

Objectives

- Solve LIS using recursion.
- Solve LIS using DP techniques.
- Solve LCS using DP techniques.
- Solve LIS by converting to LCS.

LCS

The Problem

- Given two sequences, determine the length of the longest common subsequence.
- E.g.: a,c,e,h,k and b,c,d,e,k,m have longest common subsequence c,e,k.
- Note that the sequences do not need to be sorted!

- ► If we have two sequences A and B, we can use a 2-D DP array of |A| + 1 columns and |B| + 1 rows.
- ► Let A and B be 1 index.
- The DP array position *i*, *j* will give the length of the longest common subsequence ending at A[i] and B[j].

Mat	rix						
	Ø	а	С	е	h	k	Formula
Ø	0	0	0	0	0	0	▶ $dp[0,j] = dp[i,0] = 0$
b	0						
	0						• $dp[i,j] = dp[i-1,j-1] + 1$ if
d	0						A[i] = B[j]
е	0						• $dp[i,j] = max(dp[i-1,j], dp[i,j-1])$
k	0						otherwise
т	0						
							<ロ><母><日><日><日><日><日><日><日><日><日><日><日><日<<00

Representation

- ► If we have two sequences A and B, we can use a 2-D DP array of |A| + 1 columns and |B| + 1 rows.
- ► Let A and B be 1 index.
- The DP array position *i*, *j* will give the length of the longest common subsequence ending at A[i] and B[j].

Matrix										
	Ø	а	С	е	h	k	Formula			
Ø	0	0	0	0	0	0				
Ь	0	0	0	0	0	0	► $dp[0,j] = dp[i,0] = 0$			
С	0						• $dp[i,j] = dp[i-1,j-1] + 1$ if			
d	0						A[i] = B[j]			
е	0						• $dp[i,j] = max(dp[i-1,j], dp[i,j-1])$			
k	0						otherwise			
т	0									

Representation

- ► If we have two sequences A and B, we can use a 2-D DP array of |A| + 1 columns and |B| + 1 rows.
- ► Let A and B be 1 index.
- The DP array position *i*, *j* will give the length of the longest common subsequence ending at A[i] and B[j].

Mat	trix						
	Ø	а	С	е	h	k	Formula
Ø	0	0	0	0	0	0	
b	0	0	0	0	0	0	$\blacktriangleright dp[0,j] = dp[i,0] = 0$
С	0	0	1	1	1	1	• $dp[i,j] = dp[i-1,j-1] + 1$ if
d	0						A[i] = B[j]
е	0						• $dp[i,j] = max(dp[i-1,j], dp[i,j-1])$
k	0						otherwise
т	0						
	I						

- ► If we have two sequences A and B, we can use a 2-D DP array of |A| + 1 columns and |B| + 1 rows.
- ► Let A and B be 1 index.
- The DP array position *i*, *j* will give the length of the longest common subsequence ending at A[i] and B[j].

Matrix								
	Ø	а	С	е	h	k		
Ø	0	0	0	0	0	0		
Ь	0	0	0 0	0	0	0		
С	0	0	1 1	1	1	1		
d	0	0	1	1	1	1		
е	0							
k	0							
т	0							

Formula

- dp[0,j] = dp[i,0] = 0
- dp[i,j] = dp[i-1,j-1] + 1 if A[i] = B[j]
- ▶ dp[i,j] = max(dp[i-1,j], dp[i,j-1]) otherwise

. . . .

- ► If we have two sequences A and B, we can use a 2-D DP array of |A| + 1 columns and |B| + 1 rows.
- ► Let A and B be 1 index.
- The DP array position *i*, *j* will give the length of the longest common subsequence ending at A[i] and B[j].

Mat	Matrix								
	Ø	а	С	е	h	k			
Ø	0	0	0	0	0	0			
b	0	0	0	0	0	0			
с	0	0	1	1	1	1			
d	0	0	1	1	1	1			
е	0	0	1	2	2	2			
k	0								
т	0								

Formula

- dp[0,j] = dp[i,0] = 0
- dp[i,j] = dp[i-1,j-1] + 1 if A[i] = B[j]
- ▶ dp[i,j] = max(dp[i-1,j], dp[i,j-1]) otherwise

. . . .

- ► If we have two sequences A and B, we can use a 2-D DP array of |A| + 1 columns and |B| + 1 rows.
- ► Let A and B be 1 index.
- The DP array position *i*, *j* will give the length of the longest common subsequence ending at A[i] and B[j].

Matrix								
	Ø	а	С	е	h	k		
Ø	0	0	0	0	0	0		
b	0	0	0	0	0	0		
С	0	0	0 0 1 1 1	1	1	1		
d	0	0	1	1	1	1		
е	0	0	1	2	2	2		
k	0	0	1	2	2	3		
т	0							

Formula

- dp[0,j] = dp[i,0] = 0
- dp[i,j] = dp[i-1,j-1] + 1 if A[i] = B[j]
- ▶ dp[i,j] = max(dp[i-1,j], dp[i,j-1]) otherwise

- ► If we have two sequences A and B, we can use a 2-D DP array of |A| + 1 columns and |B| + 1 rows.
- Let A and B be 1 index.
- The DP array position *i*, *j* will give the length of the longest common subsequence ending at A[i] and B[j].

Matrix								
	Ø	а	С	е	h	k		
Ø	0	0	0	0	0	0		
b	0	0	0 0 1 1	0	0	0		
С	0	0	1	1	1	1		
d	0	0	1	1	1	1		
е	0	0	1	2	2	2		
k	0	0	1	2	2	3		
т	0	0	1	2	2	3		

Formula

- dp[0,j] = dp[i,0] = 0
- dp[i,j] = dp[i-1,j-1] + 1 if A[i] = B[j]
- ▶ dp[i,j] = max(dp[i-1,j], dp[i,j-1]) otherwise

Code

```
int LCSLength(vi a, vi b) {
     int i,j;
2
     vvi dp = vvi(a.length()+1,vi(b.length()+1));
3
4
     for(i=0; i<=a.length(); ++i)</pre>
5
       dp[i,0] = 0;
6
     for(j=0; j<=b.length(); ++j)</pre>
7
       dp[0, j] = 0;
8
     for(i=1; i<=a.length(); ++i)</pre>
9
         for(j=1; j<=b.length(); ++j)</pre>
10
           if (a[i] == b[j])
11
             dp[i,j] = dp[i-1,j-1] + 1;
12
          else
13
             dp[i,j] = max(dp[i-1,j], dp[i,j-1]);
14
15
     return dp[a.length(),b.length()];
16
                                            ŀ
17
```

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣�(♡

Discussion

Matrix

	Ø	а	С	е	h	k
Ø	0	0	0	0	0	0
b	0 0 0 0 0 0 0 0 0	0	0	0	0	0
С	0	0	1	1	1	1
d	0	0	1	1	1	1
е	0	0	1	2	2	2
k	0	0	1	2	2	3
т	0	0	1	2	2	3

Discussion

- How can we "read out" the actual subsequence?
- How can we save memory if the two subsequences are very large?

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト の Q ()

LIS

The Problem

- Given a sequences, determine the length of the longest increasing subsequence.
- E.g.: 2,1,5,8,3,5,10 has LIS of 2,5,8,10.

There can be more than one LIS!

Recursive Solution

- We can use the recursive solution as a start for the DP version.
- Let *lis(i)* be the length of the longest increasing subsequence ending at *i*.
- Then I(0) = 1.
 - $lis(i) = 1 + max_{j=0}^{i-1} lis(j)$ when a[j] < a[i]
 - lis $(i) = 1 \sim \text{otherwise}$.
- This is exponential time.

Memoizing Version

```
If we simply memoize lis we get O(n^2) time
```

```
int lis(a) {
1
        int i,j,m;
2
        vi lis(a.length(),1);
3
        for(i=1; i<a.length(); ++i)</pre>
4
            for(j=0; j<i; ++j)</pre>
5
                if (a[i] > a[j] && lis[i] <= lis[j])</pre>
6
                   lis[j] = lis[i] + 1;
7
        for(i=0, m=1; i<a.length(); ++i)</pre>
8
            m = max(m, lis[i]);
9
        return m;
10
   }
11
```

Return the elemenents

We can keep track of the "previous" elements to return the actual sequence.

```
vi lis(a) {
1
        int i,j,m;
2
        vi lis(a.length(),1);
3
        vi prev(a.length(),-1);
4
        for(i=1; i<a.length(); ++i)</pre>
5
           for(j=0; j<i; ++j)</pre>
6
               if (a[i] > a[j] && lis[i] <= lis[j]) {</pre>
7
                   lis[j] = lis[i] + 1;
8
                  prev[i] = j;
9
                 }
10
        for(i=0, m=1; i<a.length(); ++i)</pre>
11
           m = max(m, lis[i]);
12
        return prev;
13
    ł
14
                                               ▲ロ▶▲掃▶▲ヨ▶▲ヨ▶ ヨーのQ@
```

2

LIS is like LCS!

- We can use LCS code to solve this.
- Create a copy of A into B, sorting B.
 - Remove duplicates if you want a strictly increasing sequence.

Use sets

```
vi distictCopy(vi a) {
```

```
vi new; set<int> seen;
```

```
4 for(auto it=a.begin(); it != a.end(); ++it)
5 if (seen.find(*it) == seen.end()) {
6 seen.insert(*it);
7 new.push_back(*it);
8 }
9
10 sort(new.begin(), new.end());
11 return new;
```

```
12 }
```