
Introduction

More Tricks with DFS

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science



Introduction

Objectives

Your Objectives: Use DFS to

I check if a graph is bipartite

I find articulation points

I find bridges (cut edges)

I see if a graph has cycles

I find strongly connected components



Introduction

Check if a graph is bipartite

I Also called 2-coloring

I Use either BFS or DFS

I Start root with color 0

I Color each direct neighbor color 1

For vertex u use 1 - color[u] for neighbors.

I Recurse / Enqueue

I If you find an already visited neighbor with the same color as

the parent, the graph is not bipartite. a−

b−

c−

d−

e−

f−

g−



Introduction

Check if a graph is bipartite

I Also called 2-coloring

I Use either BFS or DFS

I Start root with color 0

I Color each direct neighbor color 1

For vertex u use 1 - color[u] for neighbors.

I Recurse / Enqueue

I If you find an already visited neighbor with the same color as

the parent, the graph is not bipartite. a0

b−

c−

d−

e−

f−

g−



Introduction

Check if a graph is bipartite

I Also called 2-coloring

I Use either BFS or DFS

I Start root with color 0

I Color each direct neighbor color 1

For vertex u use 1 - color[u] for neighbors.

I Recurse / Enqueue

I If you find an already visited neighbor with the same color as

the parent, the graph is not bipartite. a0

b−

c−

d1

e−

f1

g1



Introduction

Check if a graph is bipartite

I Also called 2-coloring

I Use either BFS or DFS

I Start root with color 0

I Color each direct neighbor color 1

For vertex u use 1 - color[u] for neighbors.

I Recurse / Enqueue

I If you find an already visited neighbor with the same color as

the parent, the graph is not bipartite. a0

b−

c−

d1

e−

f1

g1



Introduction

Check if a graph is bipartite

I Also called 2-coloring

I Use either BFS or DFS

I Start root with color 0

I Color each direct neighbor color 1

For vertex u use 1 - color[u] for neighbors.

I Recurse / Enqueue

I If you find an already visited neighbor with the same color as

the parent, the graph is not bipartite. a0

b0

c−

d1

e−

f1

g1



Introduction

Check if a graph is bipartite

I Also called 2-coloring

I Use either BFS or DFS

I Start root with color 0

I Color each direct neighbor color 1

For vertex u use 1 - color[u] for neighbors.

I Recurse / Enqueue

I If you find an already visited neighbor with the same color as

the parent, the graph is not bipartite. a0

b0

c−

d1

e−

f1

g1



Introduction

Check if a graph is bipartite

I Also called 2-coloring

I Use either BFS or DFS

I Start root with color 0

I Color each direct neighbor color 1

For vertex u use 1 - color[u] for neighbors.

I Recurse / Enqueue

I If you find an already visited neighbor with the same color as

the parent, the graph is not bipartite. a0

b0

c0

d1

e−

f1

g1



Introduction

Detecting Cycles

I Use 3 states:

I Unvisited
I Explored — we entered the node but haven’t

finished it yet
I Visited —mark when we are done with the node.

I Edge types:

I Explored→ Unvisited : Parent discovers new child
I Explored→ Visited: A forward or cross edge
I Explored→ Explored: A back edge / cycle aU

bU

cU

dU

eU fU



Introduction

Detecting Cycles

I Use 3 states:

I Unvisited
I Explored — we entered the node but haven’t

finished it yet
I Visited —mark when we are done with the node.

I Edge types:

I Explored→ Unvisited : Parent discovers new child
I Explored→ Visited: A forward or cross edge
I Explored→ Explored: A back edge / cycle aE

bU

cU

dU

eU fU



Introduction

Detecting Cycles

I Use 3 states:

I Unvisited
I Explored — we entered the node but haven’t

finished it yet
I Visited —mark when we are done with the node.

I Edge types:

I Explored→ Unvisited : Parent discovers new child
I Explored→ Visited: A forward or cross edge
I Explored→ Explored: A back edge / cycle aE

bE

cU

dU

eU fU



Introduction

Detecting Cycles

I Use 3 states:

I Unvisited
I Explored — we entered the node but haven’t

finished it yet
I Visited —mark when we are done with the node.

I Edge types:

I Explored→ Unvisited : Parent discovers new child
I Explored→ Visited: A forward or cross edge
I Explored→ Explored: A back edge / cycle aE

bE

cU

dU

eE fU



Introduction

Detecting Cycles

I Use 3 states:

I Unvisited
I Explored — we entered the node but haven’t

finished it yet
I Visited —mark when we are done with the node.

I Edge types:

I Explored→ Unvisited : Parent discovers new child
I Explored→ Visited: A forward or cross edge
I Explored→ Explored: A back edge / cycle aE

bE

cU

dU

eE fE



Introduction

Detecting Cycles

I Use 3 states:

I Unvisited
I Explored — we entered the node but haven’t

finished it yet
I Visited —mark when we are done with the node.

I Edge types:

I Explored→ Unvisited : Parent discovers new child
I Explored→ Visited: A forward or cross edge
I Explored→ Explored: A back edge / cycle aE

bE

cU

dE

eE fE



Introduction

Finding Cut Nodes and Edges

a

b

c

d

e

f

g

h

i

j

k

l
I Perform a DFS on this graph

I Put a superscript on a node for

the DFS Num.

I Put a subscript for the DFS Min.

I Where are the cut edges, cut

nodes, SCCs, and cycles?



Introduction

Finding Cut Nodes and Edges

a00

b33

c22

d53

e43

f66

g96

h76

i86

j128

k108

l118

I dfs_min[u] < dfs_num[u], then
u belongs to a cycle.

I dfs_min[u] = dfs_num[u], then
we have the root of a SCC.

I dfs_num[u] <= dfs_min[v],
then u is a cut node.

I dfs_num[u] < dfs_min[v], then
u-v is a cut edge.



Introduction

Finding Cut Nodes and Edges

a00

b10

c20 d33

f43

e53

I If dfs_min[u] < dfs_num[u], then u
belongs to a cycle.

I If dfs_min[u] = dfs_num[u], then
we have the root of a SCC.

I If dfs_num[u] <= dfs_min[v], then
u is a cut node.

I If dfs_num[u] < dfs_min[v], then
u-v is a cut edge.


	Introduction
	Objectives


