
Introduction and Objectives Greedy Algorithms

Greedy Algorithms

Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Fall 2023

Introduction and Objectives Greedy Algorithms

Objectives

I Describe the characteristics of a greedy algorithm

I Show how to use a greedy algorithm to solve several classic

problems

Introduction and Objectives Greedy Algorithms

Properties of Greedy Algorithms

1. They have optimal substructure— subproblems have optimal

solutions that can be

combined to get the main solution.

1. They have the Greedy Property—We will never regret making a

greedy choice locally.

Introduction and Objectives Greedy Algorithms

Classic Example: Coin Change

I Given coins of values 25, 10, 5, 1: make 57 with as few coins as

possible.

I This version can be solved greedily!

I 57 = 25 × 2 + 5 + 1 × 2.

1 int numCoinTypes, amount, count, i;
2 cin >> numCoinTypes;
3 vi coins;
4 for(i=0; i<numCoinTypes; ++i) {
5 cin >> x; coins.push_back(x);
6 }
7 cin >> amount;
8 count = 0; i=0;
9 while (amount > 0)
10 if (coins[i] <= amount) {
11 amount -= coins[i]; ++count;
12 }

Introduction and Objectives Greedy Algorithms

Coin change is not always greedy

I Suppose we have coin values 25, 20, 5, 1.

I What is the optimal way to make 40 cents change now?

I Greedily: 25 + 5 + 5 = 3 coins

I Optimal: 20 × 2

Introduction and Objectives Greedy Algorithms

Coin change is not always greedy

I Suppose we have coin values 25, 20, 5, 1.

I What is the optimal way to make 40 cents change now?

I Greedily: 25 + 5 + 5 = 3 coins

I Optimal: 20 × 2

Introduction and Objectives Greedy Algorithms

Coin change is not always greedy

I Suppose we have coin values 25, 20, 5, 1.

I What is the optimal way to make 40 cents change now?

I Greedily: 25 + 5 + 5 = 3 coins

I Optimal: 20 × 2

Introduction and Objectives Greedy Algorithms

Coin change is not always greedy

I Suppose we have coin values 25, 20, 5, 1.

I What is the optimal way to make 40 cents change now?

I Greedily: 25 + 5 + 5 = 3 coins

I Optimal: 20 × 2

Introduction and Objectives Greedy Algorithms

Classic Example: Activity Selection Problem

I Given a list of activities with start and finish times, what is the
maximum number of activities someone can do?

I Assume only one activity at a time.

I Sort activities by finish times

I Add first activity to list

I Repeat: take first activity that has start time after last finish time.

Introduction and Objectives Greedy Algorithms

Classic Example: Activity Selection Problem

I Given a list of activities with start and finish times, what is the
maximum number of activities someone can do?

I Assume only one activity at a time.

I Sort activities by finish times

I Add first activity to list

I Repeat: take first activity that has start time after last finish time.

Introduction and Objectives Greedy Algorithms

Classic Example: Activity Selection Problem

I Given a list of activities with start and finish times, what is the
maximum number of activities someone can do?

I Assume only one activity at a time.

I Sort activities by finish times

I Add first activity to list

I Repeat: take first activity that has start time after last finish time.

Introduction and Objectives Greedy Algorithms

Classic Example: Activity Selection Problem

I Given a list of activities with start and finish times, what is the
maximum number of activities someone can do?

I Assume only one activity at a time.

I Sort activities by finish times

I Add first activity to list

I Repeat: take first activity that has start time after last finish time.

Introduction and Objectives Greedy Algorithms

Classic Example: Activity Selection Problem

I Given a list of activities with start and finish times, what is the
maximum number of activities someone can do?

I Assume only one activity at a time.

I Sort activities by finish times

I Add first activity to list

I Repeat: take first activity that has start time after last finish time.

Introduction and Objectives Greedy Algorithms

Source Code

I Assume a has pairs representing the activities.

1 vii a; // actvitiy pairs
2 int last;
3 cout << a[0] << endl;
4 last = a[0].second;
5 for(i=1; i<a.length; ++i)
6 if (a[i].first >= last) {
7 cout << a[i] << endl;
8 last = a[i].second;
9 }

Introduction and Objectives Greedy Algorithms

In contests

I Use it if you can, but be sure. Otherwise, use Complete Search or

DP.

I Learn a few classic algorithms: coin change, load balancing, interval

covering

I Preprocessing input can help… e.g., sorting your input first.

	Introduction and Objectives
	Greedy Algorithms

