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Objectives

I Describe the characteristics of a greedy algorithm

I Show how to use a greedy algorithm to solve several classic

problems
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Properties of Greedy Algorithms

1. They have optimal substructure— subproblems have optimal

solutions that can be

combined to get the main solution.

1. They have the Greedy Property—We will never regret making a

greedy choice locally.
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Classic Example: Coin Change

I Given coins of values 25, 10, 5, 1: make 57 with as few coins as

possible.

I This version can be solved greedily!

I 57 = 25 × 2 + 5 + 1 × 2.

1 int numCoinTypes, amount, count, i;
2 cin >> numCoinTypes;
3 vi coins;
4 for(i=0; i<numCoinTypes; ++i) {
5 cin >> x; coins.push_back(x);
6 }
7 cin >> amount;
8 count = 0; i=0;
9 while (amount > 0)
10 if (coins[i] <= amount) {
11 amount -= coins[i]; ++count;
12 }
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Coin change is not always greedy

I Suppose we have coin values 25, 20, 5, 1.

I What is the optimal way to make 40 cents change now?

I Greedily: 25 + 5 + 5 = 3 coins

I Optimal: 20 × 2
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Classic Example: Activity Selection Problem

I Given a list of activities with start and finish times, what is the
maximum number of activities someone can do?

I Assume only one activity at a time.

I Sort activities by finish times

I Add first activity to list

I Repeat: take first activity that has start time after last finish time.
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Source Code

I Assume a has pairs representing the activities.

1 vii a; // actvitiy pairs
2 int last;
3 cout << a[0] << endl;
4 last = a[0].second;
5 for(i=1; i<a.length; ++i)
6 if (a[i].first >= last) {
7 cout << a[i] << endl;
8 last = a[i].second;
9 }
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In contests

I Use it if you can, but be sure. Otherwise, use Complete Search or

DP.

I Learn a few classic algorithms: coin change, load balancing, interval

covering

I Preprocessing input can help… e.g., sorting your input first.
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