
Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Standard Template Library

Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Fall 2023



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Objectives

I Use the Standard Template Library (STL) built-in datastructures to
solve problems

I Arrays / Vectors
I Stacks and Queues
I Sets and Maps



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

C-Style Arrays

I A C-style array is simply a block of contiguous memory.

I First element is always 0.

I Note the < in the for loop. If you put <= you will certainly have
touble!

I If you get a “runtime error” from the judge, check for that.

I Access an element by index with brackets: O(1) time. Very fast!
I If you have to “look for” an element, it’sO(n) time. Use with

caution.

1 int arr[100];
2 int i;
3

4 for(i=0; i<100; ++i) {
5 arr[i] = i * 10;
6 }



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

C-Style Arrays, initialization

I You can initialize arrays inline in C if you need to.

I Note that uninitialized items are undefined!

I You don’t have to initialize right away, but you have to before you

use it!

1 int foo[10] = {8,6,7,5,3,0,9};
2 char suits[4] = "SHCD"; // Spades, Hearts, Clubs, Diamonds



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Vectors

I Vectors in C++ are awesome. Use them unless you have good
reason not to.

I They can grow dynamically! No need to determine the proper size in

advance.
I Many iterators to provide traversals.
I Reasonable default initialization.
I Use push_back to insert an element at the end.

I Inserting at the beginning is slow! Don’t do it!

1 vector<int> foo;
2

3 for(int i=0; i<N; ++i) {
4 cin >> data;
5 foo.push_back(data);
6 }



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Vector initializations

I The constructor can initialize the vector for you.

I One argument n: n instances of the default.
I Two arguments n and x: n copies of x.

1 vector<int> foo(100);
2 vector<int> foo(500,123);

I You can use foo.reserve(1000) to pre-allocate space.



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Looping

I C Style

1 int sum=0;
2 for(i = 0; i<foo.size(); ++i)
3 sum += foo[i]:

I Iterator Style

int sum=0;
for(auto i = foo.begin(); i != foo.end(); ++i)

sum += *i;

I Reverse Iterator Style

1 int sum=0;
2 for(auto i = foo.rbegin(); i != foo.rend(); ++i)
3 sum += *i;



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Style

I Certain types come up a lot, so some standard typedefs have

evolved:

1 typedef vector<int> vi;
2 typedef vector<vi> vvi;



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Pairs

I It is often convenient to define tuples as well.

1 pair<int,int> coord;
2

3 coord.first = 10;
4 coord.second = 999;

I We have standard typedefs for them too.

1 typedef pair<int,int> ii;
2 typedef vector<ii> vii;



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Stacks

I I think you know about these….

I Stacks have three operations:

I push(x) — add x to the top of the stack: O(1)
I pop() — remove the top element from the stack. (Some

implementations will also return the element.) O(1)
I top() —Returns the top element. O(1)

1 #include <bits/stdc++.h>
2 using namespace std;
3 int main() {
4 stack<int> s;
5 s.push(10); s.push(20); s.push(30);
6 while (! s.empty()) {
7 cout << s.top() << endl;
8 s.pop();
9 }
10 } // outputs: 30, 20, 10



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Stack Use Case

I Common use-cases: do parens match up?

1 stack<int> s;
2 char data;
3

4 while (cin >> data) {
5 if (data == '(')
6 s.push(1);
7 else
8 s.pop(); // check if empty first though!
9 }

I Also useful in Depth First Search, cycle detection in graphs.

I A vector has push_back, and can access all members.



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Queues
I Queues have three operations:

I push(x) — add x to the back of the queue: O(1) Traditionally
called enqueue.

I pop() — remove the first element from the queue. (Some

implementations will also return the element.) O(1) Traditionally
called dequeue.

I front() —Returns the top element. O(1)

1 #include <bits/stdc++.h>
2 using namespace std;
3 int main() {
4 queue<int> q;
5 q.push(10); q.push(20); q.push(30);
6 while (! q.empty()) {
7 cout << q.front() << endl;
8 q.pop();
9 }
10 } // outputs: 10, 20, 30



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Queue Use Cases

I You will see these a lot.

I Many graph algorithms use queues.
I Breadth first search
I Bipartite graph check
I Vectors are not as good a replacement for these.



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Motivation

I Arrays are fun, but what’s with all the integers?

I Hashmaps, also called dictionaries, allow you to look up a value by

supplying a key.
I E.g., name / phone number, word / definition

I Hash maps can find any object we want quickly.

I Sets are like hash maps but we don’t care about the value part.

I These, with arrays, are easily the most important data-structure you

can know.



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Operations

We will show these operations for C++ and Python

I Declaring or Creating the map.

I Insert a key-value pair into the map

I Lookup a value given a key

I Check if a key is in the map

I Query the size

I Iterate over the keys or the values

I remove a key from the map



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Creating and Inserting

I To create these in C++, you will use the map STL class.

I You will need to provide the key and the value as templates.

I Insertion has two forms:

I “array like” insertion
I “pair” insertion using insert

#include <bits/stdc++.h>
using namespace std;

int main() {
map<string,int> phonebook;
phonebook["Jenni"] = 8675309;
phonebook["emergency"] = 911;
phonebook.insert({"Empire",5882300});

}



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

In-line initialization

I You can also initialize it at compile-time, but this is a bit rare in CP.

map<string,int> phonebook;
phonebook = {{"Jenni",8675390},

{"emergency", 911},
{"Empire", 5882300}};



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Lookup

To lookup a specific value, you also have options:

I Use array syntax if you know the value is there.

I It will create the key if it doesn’t already exist!

cout << phonebook["Jenni"] << " and "
<< phonebook["H"] << endl;

Returns 8675309 and 0.



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Finding Keys

I To check if the key is in the container first, use contains
if (phonebook.contains("H"))

cout << "H is " << phonebook["H"] << endl;

I Finding a specific value is not supported. Program it yourself!



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Size

I To get the number of pairs, use size().
I To check if it’s empty, use empty()

if (phonebook.empty())
cout << "We don't know anyone." << endl;

else
cout << "There are " << phonebook.size()

<< " entries." << endl;



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Iteration

I To loop over all the keys, we have iterators.

I Note that the order of the keys is arbitrary!

I Also note that the iterator return pairs!

for(auto it = phonebook.begin();
it != phonebook.end();
++it)

cout << it->first << " has phone number "
<< it->second << endl;



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Sets

I Use unordered_set for fast set operations.

I Use set if you want to retrieve the elements in a sorted order.

#include <bits/stdc++.h>
using namespace std;

int main() {
unordered<string> people;
phonebook.insert("Jenni");
phonebook.insert("emergency");
phonebook.insert("Empire");

}



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Creating and Inserting

I To create in Python, you can initialize an empty version or

prepopulate.

phonebook = {}

phonebook["Jenni"] = 8675309
phonebook["emergency"] = 911
phonebook["Empire"] = 5882300
Also

phonebook = {"Jenni":8675390,
"emergency": 911,
"Empire": 5882300}



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Lookup and finding keys

To lookup a specific value, you also have options:

I Use array syntax if you know the value is there.

I It will raise an exception if the key doesn’t already exist!

if "H" in phonebook:
print(f"{phonebook['Jenni']} and {phonebook['H']})

else:
print(f"{phonebook['Jenni']})



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Finding Values

I Unlike C++, you can get the values in a dictionary easily:

for i in phonebook.values():
print(phonebook[i])



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Size

I To get the number of pairs, use len().
print(f"There are {len(phonebook)} entries.")



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Iteration

I To loop over all the keys, we have iterators.

I Note that the order of the keys is arbitrary!

for k in phonebook:
print(k)



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Sets

I For sets you have to call the set() function to start.

I Use member function add() to insert.

I We also have nice utilities like intersection(), difference(),
etc.



Arrays and Vectors Stacks and Queues Maps C++ Python Final Thoughts

Details

I In C++, sets are not hashmaps, they typically use red-black trees.

I So,O(log2 n) access time.

I In Python it uses open addressed hashing with random probing

for collision resolving.


	Arrays and Vectors
	Stacks and Queues
	Maps
	C++
	Python
	Final Thoughts

